Harvest
Use of ripeners in sugar cane
Sandoval Pineda, JF; Villegas Trujillo, F. | NOV 2023 | ISBN 978-958-8449-29-6
Introduction
Sugarcane in the Cauca River Valley grows in different climatic and management conditions that directly affect the maturation of the crop. In this sense, abundant rainfall and high night temperatures, as well as excess nitrogen fertilization and late irrigation, promote increases in the growth and respiration rates of the plant in the maturation stage. These unfavorable factors for natural ripening reduce the potential amount of sucrose that could be stored in the internodes (Unigarro & Villegas, 2020).
Dado que no es posible asegurar siempre las condiciones ideales para la maduración, ya que éstas dependen de la variabilidad espacial y temporal de la zona donde se ubican los cultivos, se requiere usar productos maduradores con el fin de reducir el gasto respiratorio, regular el crecimiento de la planta y promover la translocación de carbohidratos hacia los entrenudos. Por consiguiente, un madurador ideal de la caña de azúcar sería aquel que mejore los contenidos de sacarosa de manera rápida, consistente y económica, sin dañar el cultivo, ni su siguiente ciclo ni los cultivos vecinos, además de poseer una baja toxicidad para los mamíferos y una vida media ambiental corta (Moore & Botha, 2015).
Below, the evolution of the use of ripeners in sugarcane is summarized and different technical aspects are explained such as variety, type of ingredient, dose, discharge volume and the time elapsed between application and harvest, which They affect the amount of additional sucrose that can be recovered at the time of cutting. With this, this document seeks to provide tools to make decisions with technical criteria that allow maximizing sugar production in the environmental conditions of the Cauca River valley.
About the authors
Sandoval Pineda, J.F.
Ingeniero agrónomo y magíster en fisiología de cultivos de la Universidad Nacional de Colombia sede Bogotá. Jhon Felipe desempeña su labor en Cenicaña como coordinador del área de Fitotecnia investigando estrategias innovadoras y sostenibles para el manejo de la maduración inducida en caña de azúcar a lo largo del valle del río Cauca.
Villegas Trujillo, F.
Ingeniero agrícola del convenio entre la Universidad del Valle y la Universidad Nacional de Colombia (Sede Palmira). Es Magíster en Suelos y Aguas de la Universidad Nacional de Colombia. Se vinculó a Cenicaña en 1984, al Programa de Agronomía, en donde realizó investigación en las áreas de manejo de aguas, prácticas culturales, mecanización agrícola y maduración de la caña de azúcar. En esta última área, trabajó en proyectos con énfasis en evaluación de maduradores, el mejoramiento del contenido de sacarosa de las nuevas variedades y en el estudio de los factores que afectan la productividad del cultivo de la caña de azúcar en el valle del río Cauca. Desde junio de 2018 se desempeña en la jefatura del Servicio de Cooperación Técnica y Transferencia de Tecnología de Cenicaña.
Broadley M., Brown P., Cakmak I., Rengel Z., Zhao F. (2011). Function of nutrients: Micronutrients. In Marschner's mineral nutrition of higher plants: Third Edition. https://doi.org/10.1016/B978-0-12-384905-2.00007-8
Cenicaña (2022). Annual report. Cali.
Chacravarti A., Srivastava D., Khanna I. (1956). Application of phytohormone to sugar cane. International Society Sugar Cane Technologist (ISSCT), pp. 355–364.
Chen Z., Qin C., Wang M., Liao F., Liao Q., Liu X., Li Y., Lakshmanan P., Long M., Huang D. (2019). Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC Plant Biology, 19(1), 1–17. https://doi.org/10.1186/s12870-019-1882-z
Coleman R., Todd E., Stokes I., Coleman O. (1960). The effect of gibberellic acid on sugarcane. International Society Sugar Cane Technologist (ISSCT), 588–603.
Cuhra M., Bøhn T., Cuhra, P. (2016). Glyphosate: Too much of a good thing? Frontiers in Environmental Science, 4(APR), 1–14. https://doi.org/10.3389/fenvs.2016.00028
Dreyer I., Gómez-Porras JL, Riedelsberger J. (2017). The potassium battery: a mobile energy source for transport processes in plant vascular tissues. New Phytologist, 216(4), 1049–1053. https://doi.org/10.1111/nph.14667
Du W., Pan ZY, Hussain SB, Han ZX, Peng S.A., Liu Y.Z. (2020). Foliar supplied boron can be transported to roots as a boron-sucrose complex via phloem in citrus trees. Frontiers in Plant Science, 11(March), 1–11. https://doi.org/10.3389/fpls.2020.00250
Faria AT, Ferreira EA, Rocha PRR, Silva DV, Silva AA, Fialho CMT, Silva AF (2015). Effect of trinexapac-ethyl on growth and yield of sugarcane. Daninha Plant, 33(3), 491–497. https://doi.org/10.1590/S0100-83582015000300011
Gravois K., Viator H., Reagan G., Beuzelin J., Griffin J., Tubana B., Hoy J., Agents C. (2001). Sugarcane Production Handbook – 2001.
Hammond JP, White PJ (2008). Sucrose transport in the phloem: Integrating root responses to phosphorus starvation. Journal of Experimental Botany, 59(1), 93–109. https://doi.org/10.1093/jxb/erm221
Lemoine R., La Camera S., Atanassova R., Dédaldéchamp F., Allario T., Pourtau N., Bonnemain JL, Laloi M., Coutos-Thévenot P., Maurousset L., Faucher M., Girousse C., Lemonnier P., Parrilla J., Durand M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 4(Jul), 1–21. https://doi.org/10.3389/fpls.2013.00272
Liu Z., Li P., Sun X., Zhou F., Yang C., Li L., Matsumoto H., Luo X. (2017). Fluazifop-P-butyl induced ROS generation with IAA (indole-3-acetic acid) oxidation in Acanthospermum hispidum DC Pesticide Biochemistry and Physiology, 143(October), 312–318.https://doi.org/10.1016/j.pestbp .2017.10.005
Luo X., Matsumoto H., Usui K. (2001). Comparison of physiological effects of fluazifop-butyl and sethoxydim on oat (Avena sativa L.). Weed Biology and Management, 1(2),120–127. https://doi.org/10.1046/j.1445-6664.2001.00019.x
Melgar M., Meneses A., Orozco H., Pérez O., Espinosa R. (2014). The Cultivation of Sugar Cane in Guatemala. Artemis Edineter SA.
Mishra S., Heckathorn S. (2016). Boron stress and plant carbon and nitrogen relations. In Progress in Botany (pp. 333–355). https://doi.org/10.1007/978-3-319-25688-7_11
Moore P., Botha C.F. (2015). Sugarcane physiology, biochemistry & functional biology (Vol. 53, Issue 9). Wiley Blackwell. Quevedo-Amaya YM, Sandoval-Pineda JF, Lopez ML 2021. Improvement of the natural dynamics of sucrose accumulation in high tonnage varieties. Tecnicaña Magazine. 52:12-14.
Romero R., Scandaliaris J., Rufino M. (2000). Fluazifop butyl. His employment as a chemical ripener of sugar cane in Tucumán – Argentina.
Solomon S., Li Y. rui. (2004). Chemical ripening of sugarcane: Global progress and recent developments in China. Sugar Tech, 6(4), 241–249. https://doi.org/10.1007/BF02942504
Spaunhorst DJ, Todd JR & Hale AL (2019). Sugarcane cultivar response to glyphosate and trinexapac-ethyl ripeners in Louisiana. PLoS ONE, 14(6), 1–10. https://doi.org/10.1371/journal.pone.0218656
Su LY, De la Cruz A., Moore PH, Maretzki A. (1992). The relationship of glyphosate treatment to sugar metabolism in sugarcane: new physiological insights. Journal of Plant Physiology, 140(2), 168–173. https://doi.org/10.1016/S0176-1617(11)80929-6
Unigarro C., Villegas F. (2020). Effects of meteorological variables on sugarcane ripening in the Cauca River Valley, Colombia. Tropical Agricultural Research, 50, 1–8. https://doi.org/10.1590/1983-40632020v5060815
Van Heerden PDR, Mbatha TP Ngxaliwe S. (2015). Chemical ripening of sugarcane with trinexapac-ethyl (Moddus®) — Mode of action and comparative efficacy. Field Crops Research, 181, 69–75. https://doi.org/10.1016/j.fcr.2015.06.013
Villegas F. (2010). Ripening and use of ripeners in sugar cane.
Villegas F., Arcila J. (1995). Use of ripening agents. The cultivation of cane in the sugar zone of Colombia, 394.
Wang J., Nayak S., Koch K., Ming R. (2013). Carbon partitioning in sugarcane (Saccharum species). Frontiers in Plant Science, 4(Jun). https://doi.org/10.3389/fpls.2013.00201
Wimmer MA, Abreu I., Bell RW, Bienert MD, Brown PH, Dell B., Fujiwara T., Goldbach HE, Lehto T., Mock HP, Von Wirén N., Bassil E., Bienert GP (2020). Boron: an essential element for vascular plants: A comment on Lewis (2019) 'Boron: the essential element for vascular plants that never was.' New Phytologist, 226(5), 1232–1237. https://doi.org/10.1111/nph.16127
Wu W., Du K., Kang X., Wei H. (2021). The diverse roles of cytokinins in regulating leaf development. Horticulture Research, 8(1). https://doi.org/10.1038/s41438-021-00558-3
- Sugar cane. 2. Maturation. 3. Agricultural chemicals.
Sandoval Pineda, JF & Villegas Trujillo, F. (2023). Use of ripeners in sugar cane. In: Colombian Sugarcane Research Center (Ed). Sugar cane agroindustry in Colombia. Cinderella