Biology
Physiology applied to sugarcane production in Colombia
Introduction
Plant Physiology is the science that studies the functioning of plants. In this sense, it explains, through chemical and physical laws, how plants use solar radiation to synthesize, from inorganic substances, organic molecules with which they build the complex structures that make up their body. However, the main objective of Plant Physiology is to try to understand how the chemical and physical processes that occur in different places and states of plant development are integrated and how they are modulated (Azcón Bieto and Talón, 2013). Thus, this science plays a fundamental role in the development of agricultural production systems based on the correct understanding of the processes that occur in the crop plant from the cellular level to the community level, in a context of interaction with other plants of the same species and with the prevailing climatic variables of the place where it grows and develops. However, the understanding of the physiological processes and phenomena that occur in the plant is not sufficient per se, but must be the basis for building applied knowledge that translates into new or better management practices for sugarcane cultivation. and in the production of improved genetic materials.
The physiology of production is responsible for the study of the factors and components that determine the real performance of a productive system and at the same time helps to detect gaps, which must be closed, with respect to potential performance. Frequently, the physiology of production involves the study of the so-called components of yield, that is, the physiological variables that condition the production of a crop per unit of area per unit of time. In sugar cane, the three main components of yield have been identified: the number of grinding stems per hectare, the individual weight of the stem and the concentration of sucrose per unit mass of the stem.
As an explanatory note, given the tendency that exists in the Colombian sugar agroindustry to consider as performance only the relationship between the weight of the processed sugar cane and the weight of the quintals of sugar obtained, it is necessary to note that this chapter addresses the different factors that affect crop productivity, which for most species are called 'yield components'. In this purpose, it develops the theoretical concepts and implications of the formation of the number of stems, the weight of the stem and the concentration of sucrose per unit of weight of the stem, based on the information obtained from experiments with varieties improved by Cenicaña (CC ), in the conditions of the Cauca River valley.
About the authors
Quevedo Amaya, YM
Cepeda Quevedo, AM
Temporary researcher. Agronomy program. Colombia Sugar Cane Research Center, Florida, Valle del Cauca, Colombia.
López Murcia, M. Á.
Alvarado-Sanabria OH, Garcés-Varón GA and Restrepo- Díaz, H. (2017). The effects of night-time temperatures on physiological and biochemical traits in rice. Not. Bot. Horti Agrobot. Cluj-Napoca 45, pp. 157–163. doi:10.15835/nbha45110627.
Amaya A., Cock J., Hernández A. and Irvine J. (1995). Biology, in Cane Cultivation in the Sugar Zone of Colombia, eds. CDC, TA and IECH (Cali, Colombia: Cenicaña), pp. 31–62. Available at: https://www. cenicana.org/pdf_privado/documentos_no_ seriedos/libro_el_cultivo_cana/libro_p3-394.pdf [Accessed June 11, 2021].
Anitha R., Christy P., Mary N. and Purushothaman RS (2016). Biometric and physiological characteristics of sugarcane mouse under waterlogging condition. Plant Arch. 16, pp. 105–109. Available at: http://www.plantarchives.org/PDF 16 – 1/105-109 (PA3-3181).pdf [Accessed May 5, 2022].
Azcón Bieto J. and Talón M. (2013). Fundamentals of plant physiology. 2nd ed. Madrid: McGraw-Hill.
Bell M.J. & Garside, A.L. (2005). Shoot and stalk dynamics and the yield of sugarcane crops in tropical and subtropical Queensland, Australia. F. Crop. Res. 92, pp. 231–248. doi:10.1016/j.fcr.2005.01.032.
Bonnett G.D. (2013). Developmental Stages (Phenology). Sugarcane Physiol. Biochem. Funct. Biol., pp. 35–53. doi:10.1002/9781118771280.CH3.
Boyer JS (1995). Biochemical and biophysical aspects of water deficits and the predisposition to disease. Annu. Rev. Phytopathol. 33, pp. 251–274. doi:10.1146/annurev.py.33.090195.001343.37
Caruso P., Baldoni E., Mattana M., Pietro Paolo D., Genga A., Coraggio I. et al. (2012). Ectopic expression of a rice transcription factor, Mybleu, enhances tolerance of transgenic plants of Carrizo citrange to low oxygen stress. Plant Cell, Tissue Organ Cult. 109, pp. 327–339. doi:10.1007/s11240-011-0098-1.
Casierra-Posada F., Barreto VE and Fonseca OL (2004). Growth of fruits and branches of peach tree (Prunus persica L. Batsch, cv. Conservero) in the Colombian highlands. Agron. Colomb. 22, 40–45.
Casierra-Posada F., Hernández DI, Lüdders P. and Ebert G. (2003). Growth of fruits and branches of the Anna apple tree (Malus domestica Borkh.) cultivated in the Colombian highlands. Agron. Colomb. 21, pp. 69–74.
Castro M. (2008). Cana: dry will reduce 6,3% of safra – Geral – Estadão. Estadao. Available at: https://www. estadao.com.br/noticias/geral,cana-seca-reduzira- 6-3-da-safra,117410 [Accessed May 2, 2022].
Cattani DJ and Struik PC (2001). Tillering, internal development, and dry matter partitioning in creeping bentgrass. Crop Sci. 41, pp. 111–118. doi:10.2135/ cropsci2001.411111x.
Cavalcanti J. (2010). Cana sob estiagem. D. Pernambuco. [Accessed May 2, 2022]. Cock JH, Amaya A., Bohórquez C. and Munchmeyer B. (1997). Simulation of production potential of self-defoliating sugarcane cultivars. F. Crop. Res. 54, pp. 1–8. doi:10.1016/S0378-4290(96)01019-2.
Djanaguiraman M., Perumal R., Jagadish SVK, Ciampitti IA, Welti R., and Prasad, PVV (2018). Sensitivity of sorghum pollen and pistil to high‐temperature stress. Plant. Cell Environment. 41, pp. 1065–1082. doi:10.1111/pce.13089.
Ebrahim MK, Zingsheim O., El-Shourbagy MN, Moore PH and Komor E. (1998). Growth and sugar storage in sugarcane grown at temperatures below and above optimum. J. Plant Physiol. 153, pp. 593–602. doi:10.1016/S0176-1617(98)80209-5.
Gardner FP, Pearce RB and Mitchell RL (2017). Physiology of crop plants. 2nd ed. Scientific Publishers.
Gilbert RA, Rainbolt CR, Morris DR and Bennett AC (2007). Morphological responses of sugarcane to long-term flooding. Agron. J. 99, pp. 1622–1628. doi:10.2134/agronj2007.0085.
Glaz B. and Lingle SE (2012). Flood duration and time of flood onset effects on recently planted sugarcane. Agron. J. 104, pp. 575–583. doi:10.2134/agronj2011.0351.
Gómez C., Buitrago C., Cante M. and Huertas B. (1999). Ecophysiology of potato (Solanum tuberosum) used for fresh cultivation and for industry. Rev. Comalfi 26, pp. 42–55.
Gómez LF and Narváez JL (2017). Physiology and Ecophysiology of sugar cane. Cali.
Hunt R. (1978). Plant growth analysis. First. London: Edward Arnold Publishers.
____ (1990). Basic growth analysis: plant growth analysis for beginners. First. Boston: Unwin Hyman.
____ (2017). Growth analysis, individual plants, in Encyclopedia of Applied Plant Sciences (Elsevier), pp. 421–429. doi:10.1016/B978-0-12-394807- 6.00226-4.
Hunt R., Causton DR, Shipley B. and Askew AP (2002). A modern tool for classical plant growth analysis. Ann. Bot. 90, pp. 485–8. doi:10.1093/aob/mcf214.
Inman-Bamber N., Muchow R., & Robertson, M. (2002). Dry matter partitioning of sugarcane in Australia and South Africa. F. Crop. Res. 76, pp. 71–84. doi:10.1016/S0378-4290(02)00044-8.
Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt ML, and Xu, J. (2009). Source – sink differences in genotypes and water regimes influencing sucrose accumulation in sugarcane stalks. Crop Pasture Sci. 60, 316 pp. doi:10.1071/CP08272.
Inman-Bamber NG and Smith DM (2005). Water relations in sugarcane and response to water deficits. F. Crop. Res. 92, pp. 185–202. doi:10.1016/j.fcr.2005.01.023.
Jane SA, Fernandes FA, Silva EM, Muniz JA, Fernandes TJ and Pimentel GV (2020). Adjusting the growth curve of sugarcane varieties using nonlinear models. Rural Science 50. doi:10.1590/0103- 8478cr20190408.
Karno (2007). Physiology of bud outgrowth in sugarcane. Available at: https://espace.library.uq.edu.au/view/ UQ:135076 [Accessed April 23, 2022].
Larcher W. (2003). Environmental influences on growth and development, in Physiological Plant Ecology, pp. 297–343. doi:10.1007/978-3-662-05214-3_5.
Li X., Qian Q., Fu Z., Wang Y., Xiong G., Zeng D. et al. (2003). Control of tillering in rice. Nature 422, 618–621. doi:10.1038/nature01518.
Liu YY, Li J., Liu SC, Yu Q., Tong XJ, Zhu TT et al. (2020). Sugarcane leaf photosynthetic light responses and their difference between varieties under high temperature stress. Photosynthetica 58, pp. 1009– 1018. doi:10.32615/ps.2020.038.
Matsuoka S. and Stolf R. (2012). Sugarcane tillering and ratooning: Key factors for a profitable cropping, in Sugarcane: production, cultivation and uses, pp.137–158.
McCormick AJ, Cramer MD and Watt DA (2006). Sink strength regulates photosynthesis in sugarcane. New Phytol. 171, pp. 759–770. doi:10.1111/j.1469-8137.2006.01785.x.
McCormick AJ, Cramer MD and Watt DA (2008). Culm sucrose accumulation promotes physiological decline of mature leaves in ripening sugar cane. F. Crop. Res. 108, pp. 250–258. doi:10.1016/j. fcr.2008.06.004.
Medina S., Vicente R., Nieto-Taladriz MT Aparicio N., Chairi F., Vergara-Díaz O. et al. (2019). The plant transpiration response to vapor pressure deficit (VPD) in durum wheat is associated with differential yield performance and specific expression of genes involved in primary metabolism and water transport. Front. Plant Sci. 9, 1994 pp. doi:10.3389/ fpls.2018.01994. References Physiology applied to sugarcane production in Colombia 38BIOLOGY
Moore PH and Botha FC (2013). Sugarcane: Physiology, Biochemistry, and Functional Biology. Eds. PH Moore and FC Botha Chichester, UK: John Wiley & Sons Ltd. doi:10.1002/9781118771280.
Muchow RC, Robertson MJ and Wood AW (1996). Growth of sugarcane under high input conditions in tropical Australia. II. Sucrose accumulation and commercial yield. F. Crop. Res. 48, pp. 27–36. doi:10.1016/0378-4290(96)00042-1.
Muñoz CAU, and Villegas F. de JT (2020). Effects of meteorological variables on sugarcane ripening in the Cauca river valley, Colombia. Pesqui. Agropecuária Trop. 50, pp. 1–8. doi:10.1590/1983-40632020v5060815.
Palachai CH, Songsri P. and Jongrungklang N. (2019). Comparison of yield components of sugarcane varieties grown under natural short- and long-term water-logged conditions in Thailand. SABRAO J. Breed. Genet. 51, pp. 80–92.
Pan J., Sharif R., Xu X. and Chen X. (2021). Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front. Plant Sci. 11, 2319. doi:10.3389/fpls.2020.627331.
Prasad PVV, Pisipati SR, Ristic Z., Bukovnik U. and Fritz AK (2008). Impact of nighttime temperature on physiology and growth of spring wheat. Crop Sci. 48, pp. 2372–2380. doi:10.2135/cropsci2007.12.0717.
Quevedo-Amaya YM, Beltrán-Medina JI, Hoyos-Cartagena J. Á., Calderón-Carvajal JE and Barragán-Quijano, E. (2020). Selection of sowing date and biofertilization as alternatives to improve the yield and profitability of the F68 rice variety. Agron. Colomb. 38, 61–72. doi:10.15446/agron. colomb.v38n1.79803.
Rivera-Mendes YD and Romero HM (2017). Fitting of photosynthetic response curves to photosynthetically active radiation in oil palm. Agron. Colomb. 35, pp. 323–329. doi:10.15446/agron.colomb.v35n3.63119.
Sage RF, Peixoto MM and Sage, TL (2013). Photosynthesis in sugarcane, in Sugarcane: Physiology, Biochemistry, and Functional Biology (John Wiley & Sons Ltd), pp. 121–154. doi:10.1002/9781118771280.ch6.
Santos, F., and Diola, V. (2015). “Physiology,” in Sugarcane (Elsevier), 13–33. doi:10.1016/B978-0-12-802239-9.00002-5.
Schwerz F., Medeiros SLP, Elli EF, Eloy E., Sgarbossa J. and Caron BO (2018). Plant growth, radiation use efficiency and yield of sugarcane cultivated in agroforestry systems: An alternative for threatened ecosystems. An. Acad. Bras. Science. 90, pp. 3265–3283. doi:10.1590/0001-3765201820160806.
Schymanski SJ and Or D. (2015). Wind effects on leaf transpiration challenge the concept of potential evaporation. Proc. Int. Assoc. Hydrol. Sci. 371, pp. 99–107. doi:10.5194/piahs-371-99-2015.
Sharma K.K. and Vadez V. (2017). Effect of vapor pressure deficit on sugarcane transpiration efficiency in a drying soil. At InterDrought-V (Hyderabad, India). Available at: http://oar.icrisat.org/10705/1/214.pdf [Accessed May 10, 2022].
Silva MDA, Silva JAG da, Enciso J., Sharma V. and Jifon J. (2008). Yield components as indicators of drought tolerance of sugarcane. Agricultural Sci. 65, pp. 620–627. doi:10.1590/S0103-90162008000600008.
Singh S., Singh SP, Pathak AD, and Pandey, N. (2019). Assessment of waterlogging induced physiobiochemical changes in sugarcane varieties and its association with waterlogging tolerance. J. Environ. Biol. 40, pp. 384–392. doi:10.22438/jeb/40/3/MRN-898.
Steed G., Ramírez DC, Hannah MA and Webb AAR (2021).Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science (80-.), 372 pp. doi:10.1126/science.abc9141.
Sunoj VSJ, Prasad PVV, Ciampitti IA and Maswada HF (2020). Narrowing diurnal temperature amplitude alters carbon tradeoff and reduces growth in C4 crop sorghum. Front. Plant Sci. 11, 1262 pp. doi:10.3389/fpls.2020.01262.
Tekalign T. and Hammes PS (2005). Growth and productivity of potato as influenced by cultivar and reproductive growth: II. Growth analysis, tuber yield and quality. Sci. Hortic. (Amsterdam). 105, pp. 29–44. doi:10.1016/j.scienta.2005.01.021. 39
Uehara N., Sasaki H., Aoki N. and Ohsugi R. (2009). Effects of the temperature lowered in the daytime and nighttime on sugar accumulation in sugarcane. Plant Prod. Sci. 12, pp. 420–427. doi:10.1626/pps.12.420.
Uys L., Botha FC, Hofmeyr J.-HS and Rohwer JM (2007). Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68, pp. 2375–2392. doi:10.1016/j.phytochem.2007.04.023.
Van Heerden PDR, Eggleston G. and Donaldson RA (2013). Ripening and postharvest deterioration. In Sugarcane: Physiology, Biochemistry, and Functional Biology (Chichester, UK: John Wiley & Sons Ltd), pp. 55–84. doi:10.1002/9781118771280. ch4.
Yang M. and Jiao Y. (2016). Regulation of axillary meristem initiation by transcription factors and plant hormones. Front. Plant Sci. 7, 183 pp. doi:10.3389/FPLS.2016.00183/BIBTEX.
Zhang Y.-B., Yang S.-L., Dao J.-M., Deng J., Shahzad AN, Fan X. et al. (2020). Drought-induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. PLoS One 15, e0235845. doi:10.1371/journal.pone.0235845.
Zhou W., Chen F., Meng Y., Chandrasekaran U., Luo X., Yang W. et al. (2020). Plant waterlogging/flooding stress responses: From seed germination to maturation. PlantPhysiol. Biochem. 148, pp. 228–236. doi:10.1016/j.plaphy.2020.01.020.
- Sugar cane. 2. Plant physiology. 3. Photosynthesis. 4. Water deficit. 5. Waterlogging.
Quevedo Amaya, YM, Cepeda Quevedo, AM & López Murcia, MA (2023). Physiology applied to sugarcane production in Colombia. In: Colombian Sugarcane Research Center (Ed). Sugar cane agroindustry in Colombia. Cinderella